
EVALUATION OF RECURRENT NEURAL NETWORKS FOR CROP 

RECOGNITION FROM MULTITEMPORAL REMOTE SENSING IMAGES 

 

J. D. Bermúdez 1, P. Achanccaray 1, I. D. Sanches3, L. Cue1, P.Happ,1 

R. Q. Feitosa 1,2 
1Pontifical Catholic University of Rio de Janeiro, Brazil 

2 Rio de Janeiro State University, Brazil 
3 National Institute for Space Research, Brazil 

 

Comissão IV – Sensoriamento Remoto, Fotogrametria e Interpretação de Imagens 

 

ABSTRACT 
 

Agriculture monitoring is a key task for producers, governments and decision makers. The analysis of multitemporal 

remote sensing data allows a cost-effective way to perform this task, mainly due to the increasing availability of free 

satellite imagery. Recurrent Neural Networks (RNNs) have been successfully used in temporal modeling problems, 

representing the state-of-the-art in different fields. In this work, we compare three RNN variants: Simple RNN, Long-

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), for crop mapping. We conducted a performance 

analysis of these RNN variants upon two datasets from tropical regions in Brazil using datasets from an optical  

(Landsat) and a SAR (Sentinel-1A) sensor. The results indicated that RNN techniques can be successfully applied for 

crop recognition and that GRU achieved slightly better performance than LSTM followed by Simple RNN. In terms of 

training time LSTM and GRU presented similar results, being approximately twice as slow as the simple RNN. 

 

Keywords: Crop Recognition, Deep Learning, Recurrent Neural Networks 

 

1- INTRODUCTION 

Agricultural mapping is essential for the design 

of policies aimed at food security. In this context, 

agricultural monitoring through sequences of 

multitemporal remote sensing images is a cost-effective 

solution compared to alternative approaches. The 

increasing availability of free satellite imagery with 

higher spatial resolutions and shorter revisit times 

allows capturing the evolution of crops throughout their 

phenological stages, estimating agricultural production 

with good accuracy.  

Among the different approaches proposed for 

crop mapping so far, those based on Probabilistic 

Graphical Models, like Markov Random Fields (Moser 

& Serpico, 2011) and Conditional Random Fields 

(Kenduiywo et al. 2017), and Deep Learning, such as 

Convolutional Neural Networks (Kussul et al. 2017), 

have attracted increasing attention due to their capacity 

to consider contextual information in spatial and/or 

temporal domains. These approaches achieve higher 

accuracies than conventional methods based on image 

stacking followed by classification via Support Vector 

Machines (SVM), Random Forest (RF), and Neural 

Networks (NN), among other classifiers. However, the 

computational effort associated to these methods, as 

well as their demand for labeled samples for adequate 

training are higher than conventional methods. 

Recurrent Neural Networks (RNNs) (Hopfield, 

1982), in particular, Long-Short Term Memory 

networks (LSTMs) (Hochreiter & Schmidhuber, 1997) 

and their variants, have been successfully used in 

temporal modeling problems. RNNs were first proposed 

in the 1980s. However, their high computational cost, as 

well as difficulties to train them (vanish/explosion 

gradient problem) for long-term dependencies (Pascanu 

et al., 2013), made RNNs irrelevant for many years. 

Due to the growing computational power and the 

emergence of new network’s neural units architectures, 

RNNs have become a reference for many problems that 

involve sequence analysis. These networks represent the 

state-of-the-art in applications that include speech and 

text recognition (W. Xiong et al, 2017, Wenpeng et al, 

2017). Despite similarities between such applications 

and crop recognition, there are few works in the 

literature using RNNs applied to the modeling of 

agricultural crop phenology. Exceptions are (You et al. 

2017) and (Rußwurm & Körner, 2017), which use 

LSTM.  

This paper reports the results of an 

experimental comparison of three RNNs units 

architectures for crop recognition from sequences of 

multitemporal remote sensing images, specifically, a 

simple RNNs, LSTMs, and GRUs (Gated Recurrent 

Units). Two dataset were used: a Landsat 5/7 and a 

Sentinel-1 image sequences from the municipalities of 

Ipuã in São Paulo and Campo Verde in Mato Grosso 

state, respectively, both in Brazil. 

In the next section, we review fundamental 

concepts of RNNs and the LSTMs and GRUs neural 



units network architectures. The following sections 

describe the methods evaluated in this work for crop 

recognition, the datasets used in our experiments, the 

extracted features and the experimental protocol 

followed in the experiments. Finally, we present and 

discuss the results obtained in our experiments, 

summarize the conclusions and indicate future works.  

2- RECURRENT NEURAL NETWORKS (RNNs) 

a) Fundamentals of RNNs 

RNNs are a set of neural networks specialized 

for processing sequential data. Basically, RNNs are 

neural networks with feedback. The state of the network 

at each point in time depends on both the current input 

and the previous information stored in the network, 

which allows the modeling of data sequences. This 

capacity can be useful for modeling crop changes over 

time.  

A standard RNN architecture is shown in Fig 

1. Given an input sequence (𝐱 = 𝒙0, 𝒙1, 𝒙3, . . ,  𝒙𝑡−1, 𝒙𝑡), 

the output of the network �̂� at each time index 𝑡 is given 

by: 

𝒉𝑡 = 𝑓(𝒃 +  𝑾𝒉𝑡−1 + 𝑼𝒙𝑡)                       (1) 

�̂�𝑡 = 𝑔(𝒄 +  𝑽𝒉𝑡)                             (2) 

where 𝒉𝑡 is the state of the network at time t, 𝒃 and 𝒄 

are bias weight vectors, 𝑾, 𝑼 and 𝑽 are weight matrices 

and 𝑓 and 𝑔 are usually a tanh and softmax activation 

functions, respectively. By applying Eq 1 and Eq 2 

recursively for a sequence of length 𝜏, the graph can be 

unfolded as shown in Fig 1 for 𝜏 = 3.  

During training, a loss cost function 𝐿 

quantifies the error between predicted and actual classes 

at each time step. The total loss is computed by 

summing the losses over all time steps. Then, the 

networks parameters are adjusted via back-propagation 

through time (BPTT) (Werbos, 1990) algorithm.  

The RNN architecture shown in Fig 1 is also 

known as “many to many” because it takes as input a 

sequence of length 𝜏 and outcomes another sequence of 

the same length. In some applications, it is about 

labeling the whole sequence or predicting only the final 

label of the sequence. The RNN architecture used for 

this kind of problems is known as "many to one" 

because it takes as input a sequence and predicts just 

one value.  

Two of the most widely used RNNs are 

presented in the following. 

b) Long-Short Term Memory Networks (LSTMs) 

LSTMs were introduced by (Hochreiter & 

Schmidhuber, 1997), and since then they have been 

studied and refined by many authors (Graves et al., 

2012). A LSTM has a more complex architecture than a 

regular RNN, as shown in Fig. 2. The idea behind 

LSTMs consists in controlling the information flow in 

and out of the network’s memory cell 𝑪 by means of 

specialized gate units: forget, input and output. 

Actually, a gate is a sigmoid (𝜎) neural network layer 

followed by a pointwise multiplication operator. Each 

gate is controlled by the concatenation of the network 

state at a previous time step 𝒉𝑡−1 and the current input 

signal 𝒙𝑡. The forget gate decides what information will 

be discarded from the cell state 𝑪 and the input gate 

what new information is going to be stored in it. The 

output gate determines the new state 𝒉𝑡. Equations 3 to 

9 describe the internal operations carried out in a LSTM 

neural unit: 

𝒇𝑡 = 𝜎(𝑾𝑓 ∙ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑓)   (3) 

𝒊𝑡 = 𝜎(𝑾𝑖 ∙ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑖)   (4) 

𝒐𝑡 = 𝜎(𝑾𝑜 ∙ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑜)  (5) 

𝑪𝑡 = 𝒇𝑡 ∗ 𝑪𝑡−1 + 𝒊𝑡 ∗ �̃�𝒕    (6) 

where, 

�̃�𝒕 = 𝑡𝑎𝑛ℎ (𝑾𝐶 ∙ [𝒉𝑡−1, 𝒙𝑡] + 𝒃𝐶)  (7) 

𝒉𝑡 = 𝒐𝑡 ∗ tanh (𝑪𝑡)   (8) 

 

Fig. 1 – A standard RNN architecture. Left: RNN as a 

Neural Network with feedback. Right: the same network 

as an unfolded computational graph. 

 

Fig. 2 –Block diagram of the LSTM recurrent neural 

network cell unit. Blue boxes means sigmoid or tanh 

neural networks, while green ones correspond to point 

wise operations. 



where 𝑾𝑓 , 𝑾𝑖, 𝑾𝑜, and 𝑾𝐶 and 𝒃𝑓 , 𝒃𝑖 , 𝒃𝑜 and 𝒃𝐶  are 

weigth matrices and bias vectors, respectively, to be 

learned by the network during training. 

c) Gate Recurrent Unit (GRU) 

A Gate Recurrent Unit (GRU) is a LSTM 

variant with a simpler architecture, introduced in 

(Chungetal, 2014). It has a reduced number of gates, 

thus, there are fewer parameters to be tuned. Although a 

GRU is simpler, its performance was similar to an 

LSTM in many applications (Chungetal, 2014). As 

shown in Fig. 3, the GRU neural unit architecture is 

formed by two gates: update and reset. The update gate 

𝒛𝑡 selects if the hidden state is to be updated with a new 

hidden state 𝒉 ̂𝑡, while the reset gate 𝒓𝑡 decides if the 

previous hidden state is to be ignored. See Eqs. (9-12) 

for detailed equations of 𝒓𝑡, 𝒛𝑡, 𝒉𝑡 and 𝒉 ̂𝑡. Another 

important difference with respect to LSTMs is that GRU 

drops out the use of the cell memory 𝑪, so that the 

memory of the network is only handled by the hidden 

state 𝒉𝑡, resulting in less memory demand. 

𝒛𝑡 = 𝜎(𝑾𝑧 ∙ [𝒉𝑡−1, 𝒙𝑡])   (9) 

𝒓𝑡 = 𝜎(𝑾𝑟 ∙ [𝒉𝑡−1, 𝒙𝑡])  (10) 

𝒉𝑡 = (1 − 𝒛𝑡) ∗ 𝒉𝑡−1 + 𝒛𝑡 + �̃�𝒕   (11) 

where, 

�̃�𝒕 = 𝑡𝑎𝑛ℎ (𝑾ℎ ∙ [𝒓𝑡 ∗ 𝒉𝑡−1, 𝒙𝑡])  (12) 

where 𝑾𝑧 , 𝑾𝑟 , and 𝑾ℎ are the weigth matrices to be 

learned by the network during training. 

3- METHODOLOGY 

The aforementioned RNN architectures were 

evaluated in this work for crop recognition via pixel-

wise classification considering only the temporal 

context. In our experiments, we classified only the last 

epoch of the sequence, so we adopted the “many to one” 

architecture, as is illustrated in Fig 4. Accordingly, each 

input sequence 𝐱 is the set of features observed at each 

site over time and the network's output �̂� is the 

corresponding predicted label, given the input sequence 

𝐱. In others words, at each time step t, the network is fed 

with the extracted features 𝒙𝑡  of the site being analyzed. 

Here, the RNN models the crop phenology over time by 

considering at each time step observation in both the 

previous and in the current epoch. During training, the 

loss considering the predicted and actual class is 

computed. Then, the networks’s internal parameters are 

updated via the BPTT algorithm. Finally, the learned 

model is evaluated in the sites not considered during 

training.  

4- EXPERIMENTS 

a) Datasets 

Two datasets from different sensors were 

considered in this work:  

Ipuã 

It comprises a sequence of 9 co-registered 

Landsat (5/7) images, taken between August 2000 and 

July 2001, from the municipality of Ipuã in São Paulo 

state, Brazil. Each image covers an extension of 465 

km2, approximately with 30m spatial resolution. The 

reference for each epoch was produced manually (visual 

interpretation) by a human expert. The distribution of 

classes per image is shown in Fig. 5. The main crops are 

Sugarcane, Soybean and Maize. Other classes present in 

the area are Pasture, Riparian Forest, Prepared Soil 

(which corresponds to ploughing and soil grooming 

phases), Postharvest (characterized by vegetation 

residues lying on the ground) and Others that encloses 

minor crops as well as rivers and urban areas.  

i) Campo Verde 

It comprises a sequences of 14 co-registered 

Sentinel-1A images dual polarized (VH and VV), taken 

between October 2015 and July 2016, from the 

municipality of Campo Verde in Mato Grosso state, 

Brazil. Each image covers an extension of 4782 km2 

 

Fig. 4 – Many to One RNN architecture. The output 

of the network �̂� is computed at the last time 

observation. 

 

Fig. 3 – Block diagram of the GRU recurrent neural 

unit. Blue boxes means sigmoid or tanh neural 

networks, while green ones correspond to point wisee 

operations. 



 
Fig. 5 – Percentage of samples per class in Ipuã 

dataset. 

 
Fig. 6 – Percentage of samples per class in Campo 

Verde dataset. 

approximately with 10 m spatial resolution. There are 

two images per month for November, December, 

March, May and July and only one image for October, 

January, February and June. The main crops found in 

this area are Soybean, Maize and Cotton. Also, there are 

some minor crops such as Beans and Sorghum. As non-

commercial crops (NCC), Millet, Brachiaria and 

Crotalaria were considered. Other classes present in the 

dataset are Pasture, Eucalyptus, Soil, Turf grass and 

Cerrado. Fig. 6 shows the class occurrence per image in 

the dataset. 

b) Feature Extraction 

For Ipuã dataset, the feature vector corresponds 

to the pixel spectral data from bands 1-5 and 7, and the 

Normalized Difference Vegetation Index (NDVI). For 

Campo Verde dataset, we extracted Gray Level Co-

occurrence Matrix (GLCM) features. Similar to 

(Kenduiywo et al., 2017), we computed for each image 

band four features (correlation, homogeneity, mean and 

variance) from the GLCM in four directions (0, 45, 90 

and 135 degrees) using 3×3 windows. Therefore, each 

pixel was represented by a feature vector of 

dimensionality 32.  

c) Experimental Protocol 

We used the Keras framework (Chollet et al., 

2015) implementations in our experiments. A manual 

parameter tuning was carried out for all experiments. 

The dimension of state of the networks was set to 40 

and the dropout regularization to 0.5. 

The protocol followed in the experiments 

basically consists of classifying only the image 

corresponding to the last epoch in the sequence. For 

Ipuã we considered the whole image sequence from 

February to July. For Campo Verde we considered three 

image sequences: the first one from November, 2014 to 

February, 2015, where Soybean comes about, the 

second one from March to July, where Cotton and 

Maize are present, and the third one comprising the 

whole sequence, which represents a more complex crop 

dynamics due to the presence of crop rotation in some 

sites. For Campo Verde we split the sites into five 

mutually exclusive subsets, so as to have approximately 

the same distributions of classes among all subsets. We 

adopted a k-fold procedure so that at each fold one 

subset was used for training and the remaining ones for 

testing, i.e., approximately 20% for training and 80% 

for testing at each fold. Experiments were run 10 times 

per fold, for a total of 50 executions. For the Ipuã 

dataset, we only considered one fold of 20% and 80% 

approximately for training and testing, respectively and 

executed the experiments 50 times. In this case, the 

network weights initialization was the only random 

factor that influenced the network outcomes. 

In order to balance the number of training 

samples for all classes we replicated the training 

samples of less abundant classes in both datasets. For 

Ipuã, 5,000 and for Campo Verde, 50,000 samples per 

class were selected for the training set. 

5- RESULTS 

The Overall Accuracies (OA) obtained for Ipuã 

are shown in Fig. 7. The boxplots show that LSTM and 

GRU performed better than Simple RNN in approx. 

3.5%. GRU outperformed LSTM just marginally in 

terms of OA mean and variance. 

Results for the three evaluated sequences of 

Campo Verde dataset are shown in Fig 8. Unlike Ipuã, 

all RNN architectures performed for Campo Verde 

similarly. In fact, the boxplots exhibit high variance 

values in all evaluated sequences. Recall that for 

sequences 2 and 3, the same image was classified. The 

performance for sequence 3 were better than for 

sequence 2. This indicates that data not present in 

sequence 2 from earlier epochs helped somehow to 

improve the accuracy, even though the crop dynamics in 

sequence 3 is more complex. 

The differences between Campo Verde and 

Ipuã results are due to at least two reasons. First, in the 



experiments on Ipuã, the training/testing set 

configuration was kept constant in all experiment runs. 

Second, the optical data is clearly more discriminative 

than SAR data.  

We also measured the average training times. 

For sequence 1, whose processing time is similar to 

sequence 2, Simple RNN took 162 seconds, GRU 343 

seconds, and LSTM 364 seconds. For sequence 3, in the 

same order, the execution time was 236, 408 and 432 

seconds. For Ipuã dataset, the relative execution times 

were approximately the same as for Campo Verde. As 

for the computational efficiency, the simple RNN was 

trained approximately twice as fast as GRU and LSTM. 

In terms of accuracy, GRU was the best or nearly the 

best among the tested architecture. 

6- CONCLUSION 

In this work, we compared the performance of 

three different RNNs architectures, i.e., Simple RNN, 

LSTM and GRU, for crop recognition in two 

multitemporal remote sensing datasets, specifically from 

Landsat and Sentinel 1A sensors. This study showed 

that GRU and LSTM outperformed the Simple RNN for 

a Landsat sequence. For the Sentinel-1A sequences all 

evaluated networks performed similarly in terms of 

accuracy. As for the computational load associated to 

the training phase, GRU was consistently the most 

efficient architecture. 

Further studies include experiments in other 

datasets and in other RNN configurations like “many to 

many”, which allows the use of references in all epochs. 

The addition of spatial contextual information is also 

expected to improve results. 

ACKNOWLEDGEMENTS 

The authors acknowledge the funding provided 

by CAPES and CNPq. 

REFERENCES 

Chung, J; C. Gulcehre; K. Cho and Y. Bengio, 2014, 

Empirical evaluation of gated recurrent neural networks 

on sequence modeling. arXiv preprint arXiv:1412.3555. 

Graves, I, 2012. Supervised sequence labelling with 

recurrent neural networks, Springer, Vol. 385. 

Hochreiter, S. and J. Schmidhuber, 1997, Long short-

term memory, Neural computation, Vol.9, Nº8, 

pp.1735–1780. 

Hopfield, J, 1982, Neural networks and physical 

systems with emergent collective computational 

abilities’, Proceedings of the national academy of 

sciences, Vol.79, Nº8, pp.2554–2558. 

Kenduiywo, B. K; D. Bargiel and U. Soergel, 2017, 

Higher order dynamic conditional random fields 

ensemble for crop type classification in radar images, 

IEEE Transactions on Geoscience and Remote Sensing. 

Kussul, N; M. Lavreniuk; S. Skakun and A. Shelestov 

2017, Deep learning classification of land cover and 

crop types using remote sensing data, IEEE Geoscience 

and Remote Sensing Letters, Vol.14, Nº5, pp.778–782. 

Moser, G. and S. Serpico, 2011, Multitemporal region-

based classification of high-resolution images by 

markov random fields and multiscale segmentation, in 

Geoscience and Remote Sensing Symposium 

(IGARSS), 2011 IEEE International, IEEE, pp. 102–

105. 

Pascanu, R; T. Mikolov and Y. Bengio, 2013, On the 

difficulty of training recurrent neural networks, in 

International Conference on Machine Learning, pp. 

1310–1318. 

Rußwurm, M. and M. Körner, 2017, Multi-temporal 

land cover classification with long short-term memory 

neural networks, in International Archives of the 

Photogrammetry, Remote Sensing & Spatial 

Information Sciences 42. 

Werbos, P. J, 1990, Backpropagation through time: 

what it does and how to do it, in Proceedings of the 

IEEE Vol.78, Nº10, pp.1550–1560. 

You, J; X. Li; M. Low; D. Lobell and S. Ermon, 2017, 

Deep gaussian process for crop yield prediction based 

on remote sensing data, in AAAI, pp. 4559–4566. 

 
Fig. 7 – Boxplots of OA metrics for Ipuã dataset. 

 
Fig. 8 – Boxplots of OA metrics for Campo Verde 

dataset. 


